First-Principles Study of Lithiation of Type I Ba-Doped Silicon Clathrates

Xihong Peng, † Qun Wei, ‡ Ying Li, § and Candace K. Chan*§

†College of Letters and Sciences, Arizona State University, Mesa, Arizona 85212, United States
‡School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, People’s Republic of China
§Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States

ABSTRACT: Silicon clathrate materials, previously known for their superconducting and thermoelectric characteristics, have also recently been investigated for their electrochemical properties as anodes for lithium-ion batteries due to their unique cage structure and ability to incorporate extrinsic guest atoms. To better understand the preferred structures for small degrees of lithiation, first-principles density functional theory (DFT) was used to investigate the type I clathrate compounds Si_{146}Li_{x}Ba_{y}Si_{14y} (0 ≤ x ≤ 8; y = 6, 8), and Li_{x}Ba_{y}Al_{z}Si_{14y} (0 ≤ x ≤ 8; y = 6). The formation energies, electronic band structures, and density of states (DOS) were calculated. Lithium occupation in framework vacancies, empty and Ba-occupied cage cavities, and near the pentagonal and hexagonal faces of the clathrate polyhedra was considered. The data showed that Li insertion into framework or Ba vacancies could stabilize the clathrate structure. Silicon substitution by Al lowered the formation energies of the lithiated compounds and mitigated the calculated volume increase upon lithiation. The results also showed that it is energetically feasible for multiple guest atoms to be placed in the Si_{24} cages. Changes in the clathrate atomic structure (e.g., bond lengths and angles) and electronic structure were highly dependent on the location of the Li and guest atom spacing within the clathrate framework. The results from this study can elucidate the preferred structural configurations for Li in type I, Ba-doped silicon clathrates and also be informative for efforts related to understanding the structures obtained after electrochemical insertion of lithium into silicon clathrates.

1. INTRODUCTION

Silicon clathrates† contain silicon covalently bonded in face-sharing Si_{10} Si_{12} and/or Si_{13} clusters and have attracted interest for their unique cage-like structures. The polyhedra in silicon clathrates create natural cavities for guests such as alkali and alkaline earth atoms, which can scatter acoustic phonon modes and lower the clathrate thermal conductivity, making them promising materials for thermal energy conversion or hydrogen storage.11,12 The clathrate structure has also been proposed to be useful for energy storage applications. Diamond cubic (c-Si) and amorphous silicon have been extensively studied as high-capacity anode materials13–15 for Li-ion batteries but suffer from large volume changes and structural transformations, which can affect their long-term cycling stability. In contrast, the polyhedral cavities found in silicon clathrates may be able to provide sufficient space for the insertion of Li ions without affecting the structure of the silicon framework.

Type I clathrates of the form M_{8}Si_{46} (where M is the guest atom residing within the cage cavities) are made of two pentagonal dodecahedra (Si_{20} cages) plus six tetrakaidecahedra (Si_{24} cages) per unit cell. Type I clathrates adopt a crystal structure belonging to the simple cubic space group Pm3m with M atoms located in the 6d (center of the Si_{24} cages) and 2a sites (center of the Si_{20} cages), as described with Wyckoff symmetry notation (Figure 1). Each Si_{24} cage is composed of 12 pentagonal and 2 hexagonal faces, while the Si_{20} cage has only 12 pentagonal faces. On the basis of the accessible volume in the empty type I clathrate Si_{46} (42.9 Å^{3}/unit cell) and a Li+ probe sphere with ionic radius of 0.76 Å, an occupancy of 23 Li+ per unit cell corresponding to a specific capacity of 478 mAh/g was predicted, assuming no volume expansion.16 However, the difficulty of synthesizing guest-free Si_{46} precludes the experimental verification of this result.

On the other hand, type II clathrates of the form M_{5}Si_{136} (0 < y < 24) can be prepared with close to empty cavities. Type II clathrates adopt the face-centered cubic structure Fd3m and are composed of 16 Si_{20} cages and eight hexakaidecahedron (Si_{28}...
Figure 1. Type I silicon clathrate structures. (a) Ba$_{8}$Si$_{46}$ unit cell with crystallographic sites labeled using Wyckoff notation: Ba 6d (green), Ba 2a (pink), Si 6c (red), Si 16i (cyan), Si 24k (blue). (b) Wire-frame representation of Si$_{136}$ and two Si$_{24}$ cages with 2a, 6b, and 6d sites labeled. Other atoms in the unit cell are omitted for clarity.

2. COMPUTATIONAL METHODS

The first-principles density-functional theory (DFT) calculations were performed using the VASP code31,32 The PBE functional33 and projector augmented wave (PAW)31 potentials were used along with plane wave basis sets. In the PAW potentials, the Si 3s and 3p, Ba 5s, 5p, and 6s, Al 3s and 3p, and Li 1s and 2s electrons were treated as valence electrons. The energy cutoff for the plane wave basis set was 300 eV. The convergence criteria for energy and force were set to be 0.01 and 0.1 meV, respectively. The reciprocal space was sampled using Monkhorst Pack meshes $3 \times 3 \times 3$ centered at the gamma.

The total energies, optimized lattice constants and atomic coordinates, electronic band structure, and DOS of the silicon clathrates were calculated based on the above simulation parameters. The geometry optimization of a clathrate structure was performed in two steps. First, the total volume of the unit cell was optimized without the constraint of cubic symmetry. Then the atomic coordinates of the structure were relaxed within the constraint of cubic symmetry using the optimized volume obtained in the first step. The structure obtained at the end of the first step was found to have a negligible distortion (less than 1% deviation) compared to the structure under cubic constraint (at the end of the second step). Therefore, we reported only cubic cell parameters for the optimized structures.

The formation energies, E_{form}, for the clathrates in eV/atom from the bulk components28,29 were obtained using eqs (1–4), where E(Si), E(Li), E(Ba), and E(Al) are the total energies per atom for diamond cubic Si, bcc Li, bcc Ba, and fcc Al, respectively. The calculated total energies per atom were found to be -5.417 eV for Si, -1.904 eV for Li, -1.922 eV for Ba, and -3.746 eV for Al. The formation energies enable assessment of the thermodynamic stability of the clathrate structure with respect to the atomic constituents in elemental form. Negative formation energies indicate the structures are more stable than the isolated bulk elements, suggesting that synthesis of the clathrate can be achieved, i.e., from crystallization of a melt containing the bulk sources. 34

while preserving the cage structure, which enables synthesis using direct melting rather than high-pressure methods. 7,28,29 We recently experimentally demonstrated that type I clathrates based on Ba$_{6}$Al$_{4}$Si$_{16}$z$_{2}$ can be electrochemically lithiated and delithiated. 30 Furthermore, in contrast to type II clathrates and diamond cubic silicon, no evidence of structural collapse or amorphization after lithiation could be discerned in the ternary type I clathrate using X-ray diffraction (XRD) or nuclear magnetic resonance (NMR) spectroscopy. However, the precise location of the inserted Li inside the type I clathrate structure has not yet been identified using structural characterization methods.

Here we present our first-principles investigation of the type I clathrate compounds Si$_{136}$, Li$_{x}$Ba$_{y}$Si$_{136}$ ($0 \leq x \leq 8; y = 6, 8$), and Li$_{x}Ba_{y}Al_{z}Si_{136}$ ($0 \leq x \leq 8; y = 6$) in order to understand the possible structures for small degrees of lithiation. The formation energies, electronic band structures, and density of states (DOS) were calculated. Different possible Li sites were considered to understand the most energetically stable structures and the effect of Li insertion on the Si–Si bond lengths, bond angles, and overall framework structure.
Guest-free Si_{46}:
\[E_{\text{form}} = \frac{E(\text{Si}_{46}) - 46E(\text{Si})}{46} \]
(1)

Ba-filled clathrate, e.g., Ba_{8}Si_{46}:
\[E_{\text{form}} = \frac{E(\text{Ba}_{8}\text{Si}_{46}) - 46E(\text{Si}) - 6E(\text{Ba})}{52} \]
(2)

Lithiated clathrate, e.g., Li_{x}Ba_{8}Si_{46}:
\[E_{\text{form}} = \frac{E(\text{Li}_{x}\text{Ba}_{8}\text{Si}_{46}) - xE(\text{Li}) - 6E(\text{Ba}) - 46E(\text{Si})}{(x + 52)} \]
(3)

Ternary clathrate, e.g., Ba_{6}Al_{6}Si_{40}:
\[E_{\text{form}} = \frac{E(\text{Ba}_{6}\text{Al}_{6}\text{Si}_{40}) - 6E(\text{Ba}) - 6E(\text{Al}) - 40E(\text{Si})}{52} \]
(4)

The dynamic stabilities of the lithiated clathrate structures were checked using first-principles phonon calculations with a supercell approach as implemented in the Phonopy code.37,38 The atomic charge of each individual atom in the clathrate was calculated using the Bader scheme39 to explore the possibility of electron charge transfer among the atoms in the structure.

The average equilibrium lithium potentials were calculated using the equations established by Ceder and colleagues.40,41 This voltage reflects the difference in chemical potential between the anode and the cathode in an electrochemical cell, in which the anode is delithiated (oxidized) and cathode is lithiated (reduced) during the discharge,42 as shown in eq 5, where \(F \) is Faraday’s constant and \(z \) is the charge in electrons transported by lithium in the electrolyte (1).

\[V(x) = \frac{\mu_{\text{Li}}^{\text{cathode}}(x) - \mu_{\text{Li}}^{\text{anode}}}{zF} \]
(5)

For a half-cell configuration with a Li metal anode and clathrate cathode, \(V(x) > 0 \) represents the discharge process. The Gibbs free energy change (\(\Delta G \)) for the discharge reaction can be obtained from the total energies as shown in eq 6, using the insertion of 8 Li into Si_{46} as an example.

\[\Delta G = E(\text{Li}_{8}\text{Si}_{46}) - 8E(\text{Li}) - E(\text{Si}_{46}) \]
(6)

The average lithium potential, \(V(x) \), is then obtained using eq 7.

\[V(x) = -\frac{\Delta G}{x} \]
(7)

The theoretical specific gravimetric capacity, \(C_{G} \) (in mAh/g), was determined using eq 8, where \(F \) is Faraday’s constant (9.6485 \times 10^3 C), \(x \) is the number of Li inserted, and \(M_{w} \) is the molecular weight of the compound.

\[C_{G} = \frac{1000xF}{3600M_{w}} \]
(8)

3. RESULTS

3.1. Unlithiated Compositions. The Ba_{8}Si_{46} clathrate structure was generated using the atomic coordinates reported in the literature.42 Due to the small size of the Si_{20} cages, the slight Ba deficiency observed in Ba-doped type I clathrates5,23 is thought to be associated with this cage (i.e., the 2a site). For this reason, Ba_{6}Si_{46} was also considered, in which the 2a sites are empty and available for occupation by Li. Ba_{6}Al_{6}Si_{40} was chosen as the Al-substituted clathrate to investigate. Due to the larger covalent radius43 of Al (1.21 Å) compared to Si (1.11 Å), the substitution of Si with Al increases the framework bond length and clathrate lattice constant.44 While Al substitution can occur at any of the three crystallographically distinct Si 6c, 16i, and 24k sites6,44 (Figure 1a), for low degrees of substitution, studies have shown that the 6c site is preferred.6,45 Hence, the Ba_{6}Al_{6}Si_{40} structure was calculated with the 6c sites occupied by Al. The calculated formation energies and lattice constants for guest free Si_{46} and unlithiated (i.e., \(x = 0 \)) Ba_{8}Si_{46}, Ba_{6}Si_{46}, Ba_{6}Al_{6}Si_{40} are shown in Figure 2a and 2b, respectively. Guest-
free Si₄₆ had a slightly positive formation energy of 0.064 eV/atom. The formation energy decreased to −0.083 eV/atom for Ba₈Si₄₆ (6d sites occupied by Ba) and −0.116 eV/atom for Ba₈Si₄₀ (2a and 6d sites occupied by Ba). The Al-substituted clathrate Ba₈Al₅Si₄₀ had an even lower formation energy of −0.135 eV/atom. The lattice constants increased with the introduction of Ba guest atoms and Al substitution (Figure 2b).

3.1. Lithium in the Framework Positions. The first site considered for occupation by Li was at a vacancy in the clathrate framework structure. To our knowledge, the only experimental evidence that Li can occupy a framework vacancy was observed in K₈LiGe₄₆ (0 ≤ x ≤ 2.3),⁴⁶ and it is not known if a similar framework substitution could occur in Ba₈Si₄₆. For the aforementioned Ge clathrate, the Li was introduced from the LiGe precursor used in the synthesis. The synthesis of Ba₈₋ₓLiₓSi₄₀ was reported from the oxidation of Ba₈Li₅Si₄₀ but neither Li substitution nor Si vacancies were observed in the products.⁴⁵

The formation energy was calculated for the clathrate structure in which Li substituted Si in each of the 6c sites, resulting in a composition of Ba₈₋ₓLiₓSi₄₀. The formation energy for this compound was −0.168 eV/atom, slightly higher than that calculated for Ba₈Al₅Si₄₀ (−0.175 eV/atom). The lattice constants were 10.57 and 10.51 Å for the Li- and Al-substituted compounds, respectively. From these results, we can see that Li framework substitution in Ba₈Si₄₆ is energetically feasible.

3.2. Lithium Occupation of Empty Si₂₀ and Si₂₄ Cages. Despite the number of type I clathrates that have been synthesized, Li is the only metal that has not been reported as a guest atom, presumably because the Li atoms are too small. Correlation diagrams for silicon clathrates⁴⁸ show that the free radius of a cage corresponds to the shortest M−Si bond distance minus the average radius of Si. With a covalent radius of only 1.28 Å, Li is much smaller than Na (1.66 Å), the latter which can form both type I and type II structures. A similar analysis based on the sizes of the guest atoms and polyhedra cavities suggested that Li may be stable in type I clathrates made of carbon frameworks but not silicon.⁸ Hence, the compound Li₄Si₄₀ with all 2a and 6d sites occupied by Li, may be hypothetical. This is consistent with the calculated positive formation energy of 0.044 eV/atom, although the slightly lower formation energy compared to guest-free Si₄₀ (0.064 eV/atom) and smaller lattice constant (Figure 2b) showed the Li atoms provided some stabilizing effect. Similar phenomena were observed in calculations performed on guest-free type II clathrate Si₁₆.²⁸,²¹

For the Ba-deficient clathrate Ba₈₋ₓSi₄₀ Li occupation of the 2a sites to form LiₓBa₈₋ₓSi₄₀ was found to lower the formation energy, likely due to the increased stabilization imparted by the filling of the polyhedra cavities. Mixed guest atom clathrates have been experimentally observed, although not with Li, e.g., Naₓ₂Ba₄Al₅Si₄₀ and Srₓ₂Ba₄₋ₓAlₓ₂Si₃₁.⁵⁰ The negative formation energy (−0.102 eV/atom) calculated for LiₓBa₈₋ₓSi₄₀ suggests that it is energetically feasible for Li to occupy the vacant Ba sites. The calculated lattice constant for LiₓBa₈₋ₓSi₄₀ did not change compared to Ba₈Si₄₀ (Figure 2b). When substituting Si with Al on the framework, the formation energy decreased further to −0.150 eV/atom for LiₓBa₄₋ₓAlₓSi₄₀ indicating that the lithiated structure is more energetically favorable when Al-framework substitution is employed. Therefore, it is of importance to check the dynamical stability of the Al-containing clathrates. As an example, we calculated the phonon dispersion curve of LiₓBa₄₋ₓAlₓSi₄₀ as shown in Figure S1. The absence of imaginary phonon frequencies throughout the entire Brillouin zone of the calculated phonon spectrum confirmed that the structure is dynamically stable.

3.3. Lithium Centered on the Hexagonal Faces of the Si₁₄₆ Cages. The Si₁₄₆ cages contain hexagonal faces in which the Si−Si bond angles are close to 120°, as opposed to the normal tetrahedral bond angle of 109.5°. The hexagons are connected through the Si 6c sites along the [100] direction, with every other hexagon rotated by 90°. The centers of these hexagonal faces, the 6b sites, are found on either side of the Ba 6d sites between adjacent Si₁₄₆ cages (Figure 1b). These 6b sites are typically not occupied in type I silicon clathrate structures, presumably because typical guest atoms (e.g., Na, Ba, K) are too large. For Ba₈Si₄₀ a single Li atom was placed on one hexagonal face (6b site) to form Li₉Ba₈Si₄₀. In this configuration, we found that the formation energy was −0.091 eV/atom, slightly higher than the formation energy for Ba₈Si₄₀ (−0.116 eV/atom). This configuration also slightly increased the lattice constant by about 0.1 Å compared to that of Ba₈Si₄₀.

Next, full occupancy of the 6b sites (x = 6) was considered for Ba₈₋ₓLiₓSi₄₀. In all three cases, the formation energies became positive (Figure 2a) and the volume increased relative to the un lithiated compounds (Figure 2c). This is expected since the Li−Si bond distances on the hexagonal faces are much shorter (~2.5 Å) than those calculated when Li is in the 2a site inside the Si₁₄₀ cage (3.3−3.4 Å). The advantage of using the Al-framework substitution is that the volume change is smaller upon lithiation. The volume increased ~6% for both Ba₈₋ₓSi₄₀ and Ba₈₋ₓAlₓSi₄₀ upon insertion of 6 Li. In contrast, the smaller change in lattice constant of only 1.4% between Ba₈₋ₓAlₓSi₄₀ and LiₓBa₈₋ₓAlₓSi₄₀ meant that only a 4.4% change in volume was calculated.

Structures with Li in both 2a and 6b sites were also considered. For Ba₈₋ₓSi₄₀ and Ba₈₋ₓAlₓSi₄₀, the structure for insertion of 5 Li (x = 5) was calculated with Li in both 2a and one-half of the 6b sites, whereas the x = 8 case had full Li occupancy in both sites. The Li sites and occupancies are summarized in Table S1. For both clathrates, the formation energies for x = 5 and 8 were lower than for x = 6 (Figure 2a). This suggests that the clathrates are more stable when the 2a sites are occupied. For x = 8, the only negative formation energy was for LiₓBa₈₋ₓAlₓSi₄₀. This result shows the stabilizing role of the Al-framework substitution. The lattice constant also did not change much between x = 6 and x = 8, as expected since the additional 2 Li were placed inside the Si₁₄₀ cage cavities. All of the bond distances increased when Al was substituted into LiₓBa₄₋ₓAlₓSi₄₀, as shown in Table 1.

<table>
<thead>
<tr>
<th>Li site</th>
<th>bond</th>
<th>LiₓBa₄₋ₓAlₓSi₄₀</th>
<th>LiₓBa₈₋ₓAlₓSi₄₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>on the hexagonal face (6b)</td>
<td>Li−Si(24k)</td>
<td>2.50</td>
<td>2.51</td>
</tr>
<tr>
<td>Li−Si/Al(6c)</td>
<td>2.63</td>
<td>2.65</td>
<td></td>
</tr>
<tr>
<td>Li−Ba</td>
<td>2.63</td>
<td>2.65</td>
<td></td>
</tr>
<tr>
<td>inside the Si₁₄₀ cage (2a)</td>
<td>Li−Si</td>
<td>3.35, 3.43</td>
<td>3.37, 3.38</td>
</tr>
</tbody>
</table>

3.4. Lithium in off-Centered Pentagonal and Hexagonal Faces of the Si₁₄₆ Cages. Several other locations for Li within the Si₁₄₆ cages were investigated. We considered that the Li could sit within the plane of a hexagonal or pentagonal face or it could be off-plane such that it was not bisected by the face. The Li could also be centered within the polygon (i.e.,
Li and angles calculated for Ba8Si46 were in close agreement with LiBa8Si46, with the Li on the pentagonal faces (in the center, starting compound and adding a single Li atom to form Figure 3. Structures of calculated LiBa8Si46 configurations with Li within the (a–d) Si24 cage or (e) Si20 cage. (Top row) View along the c axis for part of the Si14 and Si10 cages, with other atoms omitted for clarity. (Bottom row) Unit cell along the a axis. Li–Si and Li–Ba bonds are indicated with red dotted lines. (a) Li-free Ba8Si46 Wyckoff sites colored as follows: Ba 6d (green), Ba 2a (pink), Si 6c (red), Si 16i (cyan), Si 24k (blue); (b) Li1–1, (c) Li1–2, (d) Li1–3, (e) Li1–4.

equidistant from the closest Si atoms) or off-centered. These calculations were performed using Ba8Si46 (Figure 3a) as the starting compound and adding a single Li atom to form LiBa8Si46, with the Li on the pentagonal faces (in the center, close to the Si atoms, or close to the middle of the Si–Si bonds), off-centered within a hexagonal plane, or off-plane of the hexagonal and pentagonal faces (Figure S2).

From the seven different initial structures studied (Figure S2), three final lowest energy configurations were obtained (Figure 3b–d), which we designate Li1–1, Li1–2, and Li1–3. The formation energies and lattice constants for the relaxed structures are shown in Table 2, and select bond distances and angles are presented in Figure S3 and Table S2. The interatomic distances and angles calculated for Ba8Si46 were in close agreement with those derived experimentally. The results showed that the local energy minimum for Li around the pentagonal faces was in a 5-fold coordination slightly off-plane such that the Li atom was inside the Si14 cage. This is shown as configuration Li1–1 (Figure 3b). This configuration resulted in a formation energy of Approximately 0.087 eV/atom. The bond distance between the Ba in the 2a and 6d sites increased from 5.81 Å in Ba8Si46 to 6.23 Å, while the distance between two Ba 6d sites decreased slightly from 5.20 to 4.94 Å. The distance between Li and Si was on average 2.43 Å, smaller than the Li–Ba distances (2.92 and 3.31 Å). The main changes to the Si framework compared to the Li-free configuration were increases in the Si 16i–24k and 24k–24k bond lengths and corresponding bond angle changes for the distorted pentagonal face closest to the Li (Figure S3a–d).

If the Li were placed too close to a 16i–24k (Si–Si) bond, the Si pentagons became even more distorted, resulting in configuration Li1–2 (Figure 3c). The Li was oriented near the Si 16i–24k bond bridging two adjacent pentagons, as shown in Figure S3e. The Li in this position caused reduction in the Si 24k–16i–24k bond angle from Figure 3c). The formation energy for this configuration was −0.087 eV, similar to the Li1–1 configuration described above. From the data in Table S2, it is apparent that in Li1–2, the average Si–Ba and Li–Si (2.84 Å) bond distances are longer than in Li1–1 due to the distortion.

The final configuration, Li1–3, had the lowest formation energy and corresponded to Li centered in the center of the hexagon face, i.e., the 6b site, which was already described previously. This was the preferred location if the initial structure consisted of Li bisected by a hexagonal plane and in close proximity to a Si atom. However, if the Li was off-plane of the hexagonal face inside the Si24 cage and also off-centered, the preferred structure was configuration Li1–1 (Figure S2). Comparing the bond distances of Li1–3 with those in the Li1–2 configurations, the average Si–Si (2.63 Å) and Li–Ba distances are smaller, but both Ba–Ba distances increased to >6 Å, with the 6d–6d length as large as 6.38 Å. This is consistent with an overall expansion of the lattice constant while maintaining a highly symmetric structure.

3.5. Lithium in off-Centered Pentagonal Face of the Si20 Cages. To investigate the structural effect of putting Li inside the smaller Si20 cage, three additional configurations were investigated. A single Li atom was placed inside the Si20 cage, both off-plane but either centered (Figure S5a) or off-centered (Figure S5b) with respect to the pentagonal face. After relaxation, both of these initial configurations formed lowest energy structures that were actually the same as configuration Li1–1, with the Li atom shifted to the Si24 cage off-plane of a pentagonal face. On the other hand, when placing a single Li atom such that it bridged the 24k–24k (Si–Si) bond of two adjacent pentagonal faces (Figure S5c), it remained within the Si20 cage after relaxation, albeit with large bond length and bond angle distortion. Select bond lengths and angles within the Si20 cage are compared for Ba8Si46 and this configuration of LiBa8Si46 which we designate Li1–4, in Figure S6 and Table S2.
After relaxation, the largest change in bond length was the 24k−24k bond, which increased from 2.49 to 4.26 Å to accommodate for the presence of Li. The Li−Si bond distances ranged from 2.28 to 2.87 Å. These results suggest that Li does not prefer to remain inside the Si20 cage and will instead induce structural distortion to the cage framework or shift to the Si24 site off-centered of a pentagonal face.

3.6. Multiple Lithium Atoms Inside Si24 Cages. To study the structural effect of multiple Li atoms inside the clathrate cages, we first considered several possibilities to obtain Li4Ba8Si46 (Figure 4).

- Configuration Li4-1 (Figure 4a): Li atoms were placed in four 6b sites (center of hexagonal face).
- Configuration Li4-2 (Figure 4b): Three Li atoms were placed in the 6b sites, and one Li atom was placed off-center of a pentagonal face (i.e., as in configuration Li1-1 from Figure 3b).
- Configuration Li4-3 (Figure 4c): Four Li atoms were placed in the pentagonal off-plane positions inside four adjoining Si24 cages.
- Configuration Li4-4 (Figure 4d): Four Li atoms were placed together inside a single Si24 cage occupied by Ba to form a BaLi4 cluster.

Due to uncertainties in the location of the Li atoms within the clathrate structures, higher degrees of lithiation were not calculated.

The lattice constants and formation energies for the relaxed structures are shown in Table 3. All of these configurations had negative formation energies, with configuration Li4-3 showing the lowest energy. Both Li4-3 and Li4-3 structures, which involved putting Li and Ba inside the same cages, showed the greatest increases in lattice constant, distortion to the pentagonal and hexagonal faces, as well as shifts in the Ba location away from the cage centers. This was particularly pronounced for Li4-4, in which a distorted trigonal pyramid was formed consisting of Ba and two Li in the equatorial positions, with the remaining two Li in the axial positions (Figure 4e). The calculated Ba−Li bond distances for the different Li4Ba8Si46 configurations are listed in Table S3.

3.7. Average Equilibrium Lithium Voltage and Theoretical Capacities. The Gibbs free energy change for the reaction with lithium was calculated for Si46, Ba6Al6Si40, and Ba8Si46. For the clathrates containing empty cages, $\Delta G < 0$, which resulted in positive lithiation voltages, as shown in Table 4. This indicates that these materials will act as cathodes in half-cells containing Li counter electrodes and be lithiated during the discharge. Hence, the clathrates would act as suitable anodes when paired with a cathode such as LiCoO2 or LiFePO4 in a full cell. The presence of Ba guest atoms inside Si46 increased the lithiation voltage from 0.07 to 0.58 V vs Li/Li+, which resulted in positive lithiation voltages, as shown in Table 4. This indicates that these materials will act as cathodes in half-cells containing Li counter electrodes and be lithiated during the discharge. Hence, the clathrates would act as suitable anodes when paired with a cathode such as LiCoO2 or LiFePO4 in a full cell. The presence of Ba guest atoms inside Si46 increased the lithiation voltage from 0.07 to 0.58 V vs Li/Li+.30 On the other hand, all of the different Li4Ba8Si46 and Li4Ba8Si46 configurations studied had $\Delta G > 0$ and negative equilibrium lithium voltages (Table 4). These results indicate...
that formation of LiBa$_8$Si$_{46}$ and Li$_4$Ba$_8$Si$_{46}$ by lithiation of Ba$_8$Si$_{46}$ would require external bias, i.e., charging, but that the reverse reaction (delithiation of LiBa$_8$Si$_{46}$ and Li$_4$Ba$_8$Si$_{46}$) would be spontaneous. The negative formation energies for LiBa$_8$Si$_{46}$ and Li$_4$Ba$_8$Si$_{46}$ (Figure 2a) indicate that these compounds are thermodynamically stable and can be formed from the bulk elements, but the positive Gibbs free energy change for the lithium insertion reaction suggests that their use as anodes in full cells would be limited. This is likely due to the full cage occupancy in Ba$_8$Si$_{46}$, whereas the Ba-deficient clathrates are stabilized when Li occupies the empty polyhedra, which provides a driving force for lithiation during the discharge. These results are also consistent with our previous experimental observations on electrochemical lithiation in Ba-deficient clathrates.30 We note that the large variation in the calculated voltage depending on which structural configuration was used highlights the importance of the Li site on the expected lithiation voltage and that the configurations chosen here may not be representative of the structures observed experimentally.

Table S4 shows the calculated theoretical capacities for the lithiated compounds calculated using eq 8 for compositions up to $x = 8$. For Li$_8$Si$_{46}$, a theoretical capacity of 166 mAh/g was obtained, while capacities around 101 mAh/g are possible for both Li$_4$Ba$_8$Si$_{46}$ and Li$_4$Ba$_8$Al$_{40}$Si$_{40}$. Although the capacities are similar for the latter two compounds, substitution of the Si framework with Al showed lower formation energies (Figure 2a), pointing to the advantage of using Al-framework substitution. While these capacities are still much lower than those observed in graphite (~370 mAh/g) and conventional silicon anodes (~3000 mAh/g), we note that the observation that it is energetically feasible for multiple guest atoms to be placed in the Si$_{24}$ cages has important implications for the application of type I clathrates as energy storage materials, since it increases the number of possible sites available other than solely in the center of the cage cavities. Recent experimental studies have found that Na dimer clusters can be formed in type II clathrate by tuning the synthetic conditions, with Na–Na bond distances of 2.74 Å measured at 10 K.51 Furthermore, our experimental studies on Ba$_8$Al$_{4-z}$Si$_{46}$ showed that up to 44 Li per unit cell could be inserted without discernible changes to the clathrate structure,30 with discharge capacities > 300 mAh/g achieved. Such a high lithiation capacity could be possible with the formation of clusters within the cage cavities. More structural information on the lithiated clathrate structures obtained experimentally will better elucidate the theoretical limits for the gravimetric capacities.

Table 4. Calculated Gibbs Free Energy Change and Equilibrium Lithium Voltage for Lithium Insertion into Si$_{46}$, Ba$_6$Si$_{46}$, Ba$_6$Al$_{46}$Si$_{40}$, and Ba$_8$Si$_{46}$

<table>
<thead>
<tr>
<th>reaction</th>
<th>ΔG_{Gibbs}</th>
<th>average lithiation voltage (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si$_{46}$ + 8Li \rightarrow Li8Si${46}$</td>
<td>-0.583</td>
<td>0.07</td>
</tr>
<tr>
<td>Ba6Si${46}$ + 2Li \rightarrow Li$_2$Ba6Si${46}$</td>
<td>-1.164</td>
<td>0.58</td>
</tr>
<tr>
<td>Ba6Al${46}$Si$_{40}$ + 2Li \rightarrow Li2Ba6Al${46}$Si${40}$</td>
<td>-1.101</td>
<td>0.55</td>
</tr>
<tr>
<td>Ba8Si${46}$ + Li \rightarrow Li$_8$Ba6Si${46}$</td>
<td>Li$_1$-1 1.455</td>
<td>-1.46</td>
</tr>
<tr>
<td></td>
<td>Li$_1$-2 1.457</td>
<td>-1.46</td>
</tr>
<tr>
<td></td>
<td>Li$_3$-1 1.231</td>
<td>-1.23</td>
</tr>
<tr>
<td></td>
<td>Li$_4$-1 1.867</td>
<td>-1.87</td>
</tr>
<tr>
<td>Ba8Si${46}$ + 4Li \rightarrow Li$_4$Ba8Si${46}$</td>
<td>Li$_1$-1 4.375</td>
<td>-1.09</td>
</tr>
<tr>
<td></td>
<td>Li$_2$-1 3.274</td>
<td>-0.82</td>
</tr>
<tr>
<td></td>
<td>Li$_3$-1 2.676</td>
<td>-0.67</td>
</tr>
<tr>
<td></td>
<td>Li$_4$-1 2.875</td>
<td>-0.72</td>
</tr>
</tbody>
</table>

Figure S4 shows the calculated theoretical capacities for the lithiated compounds calculated using eq 8 for compositions up to $x = 8$. For Li$_8$Si$_{46}$, a theoretical capacity of 166 mAh/g was obtained, while capacities around 101 mAh/g are possible for both Li$_4$Ba$_8$Si$_{46}$ and Li$_4$Ba$_8$Al$_{40}$Si$_{40}$. Although the capacities are similar for the latter two compounds, substitution of the Si framework with Al showed lower formation energies (Figure 2a), pointing to the advantage of using Al-framework substitution. While these capacities are still much lower than those observed in graphite (~370 mAh/g) and conventional silicon anodes (~3000 mAh/g), we note that the observation that it is energetically feasible for multiple guest atoms to be placed in the Si$_{24}$ cages has important implications for the application of type I clathrates as energy storage materials, since it increases the number of possible sites available other than solely in the center of the cage cavities. Recent experimental studies have found that Na dimer clusters can be formed in type II clathrate by tuning the synthetic conditions, with Na–Na bond distances of 2.74 Å measured at 10 K.51 Furthermore, our experimental studies on Ba$_8$Al$_{4-z}$Si$_{46}$ showed that up to 44 Li per unit cell could be inserted without discernible changes to the clathrate structure,30 with discharge capacities > 300 mAh/g achieved. Such a high lithiation capacity could be possible with the formation of clusters within the cage cavities. More structural information on the lithiated clathrate structures obtained experimentally will better elucidate the theoretical limits for the gravimetric capacities.

The calculated band structures and density of states (DOS) for some of the type I clathrate structures discussed before are shown in Figure 5, while the total and projected DOS (PDOS) are shown in Figure 6. The results for Si$_{46}$, Ba$_6$Si$_{46}$, and Ba$_6$Al$_{46}$Si$_{40}$ are similar to those reported previously.42,52 A direct band gap of 1.31 eV was calculated for Si$_{46}$ (Figure 5a), which is slightly underestimated by DFT, whereas the clathrates

Figure 5. Band structure and density of states (DOS) for (a) Si$_{46}$, (b) Ba$_6$Si$_{46}$, (c) Ba$_6$Al$_{46}$Si$_{40}$, (d) Li$_2$Ba$_6$Si$_{46}$ (Li in the 2a sites in the center of the Si$_{20}$ cages), (e) LiBa$_6$Si$_{46}$ (Li$_1$-2 configuration), and (f) Li$_4$Ba$_6$Al$_{46}$Si$_{40}$ (Li in the 2a and 6b sites).
containing guest atoms were all metallic (Figure 5b−f). For clathrate materials, the electropositive guest atoms transfer valence electrons to the framework in an ionic-type host−guest interaction. For example, Ba$_8$Si$_{46}$ will have an excess of 16 electrons from the 8 divalent Ba guest atoms, which become conduction electrons.3 Substitution of silicon with a trivalent metal such as Al or Ga will allow for the electrons originating from the cage guest to be used to balance the charge through Zintl anions. Substitution of Si with Al will lead to charge balance at the Zintl condition in the compound Ba$_8$Al$_{16}$Si$_{30}$, whereby the 16 Al atoms can form four-bonded Zintl anions.5 In cases where the amount of Al substitution is not sufficient to reach the Zintl condition, e.g., in Ba$_8$Al$_{6}$Si$_{40}$, the clathrate will remain metallic in nature.

Our calculated band structure for Ba$_8$Si$_{46}$ showed a high DOS peak at the Fermi level (Figure 5b), which is predominately due to the hybridization of the Si$_{46}$ conduction band with the orbitals from the Ba in the Si$_{24}$ cages.2 The PDOS for Ba$_8$Si$_{46}$ (Figure 6b) shows that the Ba valence electrons contribute to the bottom of the conduction band. For the Al-substituted clathrate, introduction of Al shifts the Fermi level down compared to Ba$_8$Si$_{46}$.

On the other hand, comparing the PDOS of Ba$_8$Al$_{16}$Si$_{30}$ (Figure 6c) with that of the lithiated version Li$_8$Ba$_6$Al$_6$Si$_{40}$ (Figure 6f) indicates hybridization between Li, Ba, and Al. This occurs because the Li in the 6b sites are in closer proximity to the Al in the 6c sites and Ba in the 6d sites (Figure S7). The calculated bond distances for Li−Ba and Li−Al (6c) were ~2.65 Å, and that for Li−Si (24k) was ~2.51 Å. The strong hybridization of Ba electrons with the Si$_{46}$ conduction band and the high DOS close to the Fermi level are said to play key roles in the origin of superconductivity in Ba$_8$Si$_{46}$ and Na$_2$Ba$_6$Si$_{46}$ at <8 K.42,54 The similar features observed in the lithiated compounds suggest that they too may also display superconductivity properties, but this would require experimental verification.

To determine if there was significant electron transfer between the guest atoms and silicon clathrate framework, we analyzed the atomic charges in Li$_8$Ba$_6$Si$_{46}$ as examples using the Bader scheme.3 In the PAW potential provided by the simulation code, Li, Ba, and Si have 3, 10, and 4 valence electrons, respectively. The calculated average atomic charges of Li, Ba, and Si in Li$_8$Ba$_6$Si$_{46}$ were 2.21, 8.91, and 4.28, respectively, indicating some electron charge was transferred from the metal atoms to the Si framework. With partial Si substitution by Al, the average charges did not change much and were still 2.21 and 8.91 for Li and Ba in Li$_8$Ba$_6$Al$_6$Si$_{40}$.

4. DISCUSSION

From these data we can make the following conclusions regarding the energetically favored Li sites inside type I B-doped silicon clathrates and the implications for designing clathrate-based anodes for Li-ion batteries. Li occupation of defects in type I clathrates is a favorable process. Filling Ba-deficient structures (i.e., 2a site vacancies) with Li stabilizes the structures, as seen by the lower formation energies in Ba$_8$Si$_{46}$ and Ba$_x$Al$_{16}$Si$_{30}$ for $x = 2$. The Journal of Physical Chemistry C

![Figure 6. Total and projected DOS (states/eV per unit cell) for (a) Si$_{46}$, (b) Ba$_8$Si$_{46}$, (c) Ba$_8$Al$_{16}$Si$_{30}$, (d) Li$_8$Ba$_6$Si$_{40}$, (e) LiBa$_6$Si$_{46}$ (Li1-2 configuration), and (f) Li$_8$Ba$_6$Al$_6$Si$_{40}$.](image-url)
Li insertion into framework defects was also found to be favorable. Vacancy ordering on the 6c sites in type I germanium clathrates has been observed and may be a promising way to create defined sites for Li in the framework. However, similar framework vacancies have not been observed in Si46-based clathrates, although framework defects have been proposed in group III substituted clathrates (e.g., BaAlSi46, where is a vacancy) as a means for charge compensation. It is also uncertain to what extent such framework vacancies can be utilized for charge storage, due to their limited concentration in stable silicon clathrate structures.

Framework substitution with Al to form ternary compounds is favorable for a number of reasons. As mentioned previously, there are practical advantages from a synthetic standpoint in that substitution of Si for Al enables the synthesis of the clathrates using thermal methods without requiring high pressures. Al substitution increases the lattice constant of the clathrate compared to the binary system, so that the volume increase upon lithiation is smaller, as shown in Figure 2c. Also, from previous neutron diffraction studies, the Al framework substitution is rather disordered, which could increase the probability for vacancy formation and hence creation of additional sites for Li. For BaAlSi46 and BaAlSi46, the additional Ba and presence of Al substitution, respectively, stabilize the lithiated structures for x = 6, although the energies were still slightly positive. Having the mixed Li occupation on the 2a and 6b sites (x = 5) was preferable and gave negative formation energies compared to the structure with six Li atoms on the hexagonal faces. This is likely due to the longer calculated Li–Si bond distances of 3.3–3.4 Å when Li was in the Si20 cage compared to 2.3–2.6 Å when Li was placed on the hexagonal faces. When both 2a and 6b sites in Ba2AlSi46 were completely filled with Li (x = 8) the formation energy increased to 0.053 eV/atom. The stabilization effect of Al substitution could be observed, as Li2BaAlSi46 had a formation energy of ~0.011 eV/atom. These results, in addition to the simpler synthetic procedures, show that Al-substituted ternary silicon clathrate is preferred over the binary one. A recent study found a similar result in the analogous (yet still hypothetical) carbon clathrate system, wherein boron substitution of the carbon framework substantially lowered the enthalpic cost of inserting Li inside the structure, suggesting that framework substitution may be a promising and general route for stabilizing Li-containing clathrates.

The guest atom spacing within the clathrate plays a significant role on the structure of the silicon framework after lithiation. In our previous work, we found that multiple Li atoms could be placed inside the Si2n cages of the type II clathrate Na2nSi136. The calculated Na–Li bond distances were 2.84–3.24 Å, which is a similar range as the calculated Li–Ba bond distances obtained for the different LiBa2Si46 structures studied here (Table S2). These results seem to point to a general trend in which the Li–M bond distances should be within a certain distance, considering not only the location of M within the same cage cavity but also the M in the adjacent cage. Additionally, if the Li is too close to the Si atoms, the Si–Si bond lengths will distort in order to maximize the Li–M distances. This is demonstrated in the LiBa2Si46 structures in which the configuration with the most negative formation energy (Li3) had the largest Li–Ba bond distances and most Si–Si bond length and bond angle distortion. Furthermore, the lowest energy structures for LiBa8Si46 suggest that Li prefers to occupy sites within the larger Si24 cavities over the Si20 ones.

In our calculations, the location of the Li can cause volume expansion and bond distortion that should be detectable using diffraction or spectroscopic techniques. The absence of such discernible changes in our previous studies could be due to the formation of metastable phases during the experimental lithiation processes, which are not captured by the DFT calculations performed here. Furthermore, we did not take into account the fact that clathrate guest atoms have been shown to display very different nuclear density (e.g., spherical vs torus shaped) with small changes in host structure and that disorder can cause off-centering of the guest from the centers of the cages. It is also possible that experimentally, the Li atoms do not arrange in any ordered or symmetric fashion, while the structures calculated here considered discrete sites for the multiple Li atoms.

5. CONCLUSIONS

Density functional theory was used to investigate the effect of Li insertion into several Ba-doped type I silicon clathrate structures. The formation energy, lattice constant, volume change, and electronic structure were calculated. The sensitivity of the clathrate framework structure to changes upon Li insertion was highly dependent on the presence of Al framework substitution, which can mitigate volume expansion, as well as the location of the Li atoms in the structure, namely, the distance away from other guest and framework atoms. Four low-energy configurations for LiBa2Si46 were identified. The calculated band structures and density of states (DOS) also showed that insertion of Li contributes electrons to the bottom of the conduction band, with stronger hybridization between Li, Ba, and Al orbitals when Li was in the hexagonal faces compared to inside the cage cavities.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.5b07523.

Tables containing Li site occupancy in calculated structures, select calculated interatomic distances in Ba2Si46, LiBa2Si46, and Li3Ba2Si46, and theoretical specific capacities for lithiated compounds; figures showing the calculated phonon dispersion spectrum for Li3Ba2Al2Si46, initial and final relaxed structures for LiBa2Si46 select Si–Si interatomic distances and bond angles for LiBa2Si46, distorted pentagonal faces in the Li1–2 configuration of LiBa2Si46, and unit cell of Li2Ba2Al2Si40 (PDF).

AUTHOR INFORMATION

Corresponding Author
*E-mail: candace.chan@asu.edu.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported using new faculty startup funds from the Fulton Schools of Engineering (C.K.C.) and a Faculty Scholarship from the College of Letters and Sciences (X.P.) at Arizona State University (ASU) as well as funding from NSF DMR 1206795 (C.K.C. and Y.L.). The authors would also like
to thank K. S. Chan, W. Liang, and M.A. Miller for helpful discussions.

REFERENCES

